User Guide
Q1000 Elevator AC Drive
Open Loop

Cotents

Safety Information and Precautions 2
1 Product information 4
Designation Rule and Nameplate 4
General specifications 5
2 Wiring 6
Typical wiring 1 (use multi-reference input as frequency reference) 6
Typical wiring 2 (use analog input as frequency reference) 7
Terminal description 8
Extension I/O card Q1000IO1 10
3 Operation panel 12
Get familiar with operation panel 12
4 Quick setup 15
Complete timing diagram for normal travel (use multi-reference as frequency reference) 15
Elevator performance fine tuning 17
Setup flowchart 19
IGBT Enable 23
UPS function 24
5 Function code table 26
Group PO: fundamental 26
Group P1: motor 1 parameters 27
Group P2: vector control 28
Group P3: VF control 29
Group P4: input terminals 30
Group P5: output terminals 32
Group P6: start and stop control 33
Group P7: product and software version checking 33
Group P8: auxiliary functions 34
Group P9: fault and protection 34
Group PC: multi-reference 35
Group FF: drive parameters 35
Group FP: function code management 36
Group A5: control optimization 36
Group U0: monitoring 36
6 Trouble shooting 37
Inverter fault codes 37
Inverter common symptoms and diagnostics 40
Revision History 41

Safety Information and Precautions

This User Guide is packaged together with the Q1000 Elevator AC Drive. It contains basic information for quick start of the drive.

- Electrical Safety

Extreme care must be taken at all times when working with the AC Drive or within the area of the AC Drive. The voltages used in the AC Drive can cause severe electrical shock or burns and is potentially lethal. Only authorized and qualified personnel should be allowed to work on AC Drives.

- Machine/System Design and Safety of Personnel

Machine/system design, installation, commissioning startups and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and the contents of this manual. If incorrectly installed, the AC Drive may present a safety hazard.

The AC Drive uses high voltages and currents (including $D C$), carries a high level of stored electrical energy in the $D C$ bus capacitors even after power OFF. These high voltages are potentially lethal.

The AC Drive is NOT intended to be used for safety related applications/functions. The electronic "STOP \& START" control circuits within the AC Drive must not be relied upon for the safety of personnel. Such control circuits do not isolate mains power voltages from the output of the AC Drive. The mains power supply must be disconnected by an electrical safety isolation device before accessing the internal parts of the AC Drive. Safety risk assessments of the machine or process system which uses an AC Drive must be undertaken by the user and or by their systems integrator/designer. In particular the safety assessment/design must take into consideration the consequences of the AC Drive failing or tripping out during normal operation and whether this leads to a safe stop position without damaging machine, adjacent equipment and machine operators/users. This responsibility lies with the user or their machine/process system integrator.

System integrator/designer must ensure the complete system is safe and designed according to the relevant safety standards.Qma Technology and Authorized Distributors can provide recommendations related to the AC drive to ensure long term safe operation.

The installer of the AC Drive is responsible for complying with all relevant regulations for wiring, circuit fuse protection, earthing, accident prevention and electromagnetic (EMC regulations). In particular fault discrimination for preventing fire risk and solid earthing practices must be adhered to for electrical safety (also for good EMC performance). Within the European Union, all machinery in which this product is used must comply with required directives.

- Electrical Installation - Safety

Electrical shock risk is always present within an AC Drive including the output cable leading to the motor terminals. Where dynamic brake resistors are fitted external to the AC Drive, care must be taken with regards to live contact with the brake resistors, terminals which are at high DC voltage and potentially lethal. Cables from the AC Drive to the dynamic brake resistors should be double insulated as $D C$ voltages are typically 600 to 700 VDC

Mains power supply isolation switch should be fitted to the AC Drive. The mains power supply must be disconnected via the isolation switch before any cover of the AC Drive can be removed or before any servicing work is undertaken stored charge in the DC bus capacitors of the PWM inverter is potentially lethal after the AC supply has been disconnected. The AC supply must be isolated at least 10 minutes before any work can be undertaken as the stored charge will have been discharged through the internal bleed resistor fitted across the DC bus capacitors.

Whenever possible, it is good practice to check DC bus voltage with a VDC meter before accessing the inverter bridge. Where the AC Drive input is connected to the mains supply with a plug and socket, then upon disconnecting the plug and socket, be aware that the plug pins may be exposed and internally connected to DC bus capacitors (via the internal bridge rectifier in reversed bias). Wait 10 minutes to allow stored charge in the DC bus capacitors to be dissipated by the bleed resistors before commencing work on the AC Drive.

- Electrical Shock Hazard

Ensure the protective earthing conductor complies with technical standards and local safety regulations. Because the leakage current exceeds
mA in all models, IEC 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least $10 \mathrm{~mm}^{2}(\mathrm{Cu})$ or $16 \mathrm{~mm}^{2}(\mathrm{Al})$ must be used. Failure to comply may result in death or serious injury.

When using an earth leakage circuit breaker, use a residual current operated protective device (RCD) of type B (breaker which can detect both $A C$ and $D C$). Leakage current can cause unprotected components to operate incorrectly. If this is a problem, lower the carrier frequency, replace the components in question with parts protected against harmonic current, or increase the sensitivity amperage of the leakage breaker to at least 200 mA perdrive.

- Factors in determining leakage current:
- Size of the AC drive
- AC drive carrier frequency
- Motor cable type and length
- EMI/RFI filter
- Approvals

NOTE:

- The above EMC directives are complied with only when the EMC electric installation requirements are strictly observed.
- Machines and devices used in combination with this drive must also be CE certified and marked. The integrator who integrates the drive with the CE mark into other devices has the responsibility of ensuring compliance with CE standards and verifying that conditions meet European standards.

The installer of the drive is responsible for complying with all relevant regulations for wiring, circuit fuse protection, earthing, accident prevention and electromagnetic (EMC regulations). In particular fault discrimination for preventing fire risk and solid earthing practices must be adhered to for electrical safety (also for good EMC practice).

- For more information on certification, consult our distributor or sales representative.

1 Product information

1.1 Designation Rule and Nameplate

Nameplate

Take 11 kw 380 V as an example Model
Input power-
Output power
Output frequency

Barcode————
Production control code \longrightarrow

Model Numbering Description

1.2 General specifications

Voltage class			220VAC				380/400/415VAC				
Drive Model			$\begin{aligned} & \text { Q1000 } \\ & \text {-2R2-23A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & -3 R 7-23 A \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & -5 R 5-43 A \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text {-7R5-23A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text { 3R743A } \end{aligned}$	$\begin{aligned} & \text { Q10005 } \\ & \text { R543A } \end{aligned}$	$\begin{aligned} & \text { Q10007 } \\ & \text { R543A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text { 01143A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & 01143 \mathrm{~A} \end{aligned}$
	mension	Height Width Depth	[H] : 248 mm [W] : 160 mm [D] : 183 mm		[H] : 322 mm [W] : 208 mm [D] : 192 mm		[H] : 248 mm [W] : 160 mm [D] : 183 mm		[H] :322 mm [W] :208 mm [D] : 192 mm		
Mounting Hole			$\emptyset 5$		$\emptyset 6$		$\emptyset 5$		$\emptyset 6$		
, Rated Input Voltage			Three-phase 200 Vac to $240 \mathrm{Vac},-15 \%$ to $+10 \%$ (170Vac to 264 Vac)				Three-phase 380 to $480 \mathrm{~V},-15 \%$ to $+10 \%$ (323Vac to 528 Vac)				
Rated Input Current, [A]			10.5	14.6	26	35	10.5	14.6	20.5	26	35
Rated input frequency			$50 / 60 \mathrm{~Hz}, \pm 5 \%$ (47.5 to 63 Hz)								
Applicable Motor		[kW]	2.2	3.7	5.5	7.5	3.7	5.5	7.5	11	15
		[HP]	3	5	7.5	10	5	7.5	10.0	15	20
Output Current, [A] ${ }^{* 1}$			9	13	25	32	9	13	17.0	25	32
Power Capacity, [kVA]			5.9	8.9	17	21	5.9	8.9	11	17	21
Overload Capacity			150\% for 60 Sec \& 180\% for 3 Sec								
Max. output voltage			Three-phase 200Vac to 240Vac (Proportional to inputvoltage)				Three-phase 380 Vac to 480 Vac (Proportional to input voltage)				
Max. output frequency			100 Hz								
	Recommende d Power, [W]		500	750	1200	1500	750	1200	1500	2500	3000
	Recommended Resistance, [Ω]		≥ 65	≥ 45	≥ 22	≥ 16	≥ 130	≥ 90	≥ 65	≥ 43	≥ 32
Enclosure							IP 21				

\&: At 4 kHz carrier frequency without derating.
\star : The mounting dimensions are shown below.

2 Wiring

2.1 Typical wiring 1 (use multi-reference input as frequency reference)

(Default: PO-03=6, use multi-reference)

Recommended Braking Resistor

Voltage class		220VAC				380/400/415VAC				
Drive Model		$\begin{array}{\|l\|} \hline \text { Q1000 } \\ \text { 2R2-23A } \end{array}$	$\begin{array}{\|c\|} \hline \text { Q1000 } \\ -3 R 7-23 A \end{array}$	$\begin{aligned} & \hline \text { Q1000 } \\ & -5 R 5-23 A \end{aligned}$	$\begin{aligned} & \hline \text { Q1000 } \\ & -7 R 5-23 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text { 3R743A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text { 5R543A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & \text { 7R543A } \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & 01143 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Q1000 } \\ & 01543 \mathrm{~A} \end{aligned}$
	Recommended Power, [W]	500	750	1200	1500	750	1200	1500	2500	3000
	Recommended Resistance, [Ω]	≥ 65	≥ 45	≥ 22	≥ 16	≥ 130	≥ 90	≥ 65	≥ 43	≥ 32

Main Contactor

2.3 Terminal description

\checkmark Terminals of main circuit

Terminal	Terminal Name	Description
R, S, T	Three-phase power supply input terminals	Connect to the three-phase AC power supply.
$(-),(+)$	Positive and negative terminals of DC bus	Common DC bus input point.
PB, (+)	Connecting terminals of braking resistor	Connect to a braking resistor.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Output terminals	Connect to a three-phase motor.
-	Grounding terminal	Must be grounded.

\checkmark Terminals of main control board

Terminal	Terminal Name	Description
+10V-GND	+10 VDC power supply	Provide +10 VDC power supply externally. Usually, it provides power supply to the external potentiometer with resistance range of 1 to $5 \mathrm{k} \Omega$. Max. output current: 10 mA .
+24V-COM	+24 VDC power supply	Provide +24 VDC power supply externally. Usually, it provides power supply to DI/DO terminals and external sensors. Max. output current: 200 mA .
OP	Input terminal of external power supply	Connect to +24 VDC by default. Whether it connects to +24 V or COM is decided by jumper J7. When DI1 to DI5 need to be driven by the external signal, OP needs to be connected to the external power supply and be disconnected from +24 VDC.
Al1-GND	Analog input 1	Al1 input voltage range: 0 to 10 VDC . Impedance: $22 \mathrm{k} \Omega$.
Al2-GND	Analog input 2	Al2 can be used as voltage input or current input, which is chosen by jumper J8 on main control card. Input range: 0 to 10 VDC or 4 to 20 mA . Impedance: $22 \mathrm{k} \Omega$ if voltage input, 500Ω if current input.
DII-COM	Digital input 1	
DI2-COM	Digital input 2	Optical coupling isolation, compatible with dual-polarity input.
DI3-COM	Digital input 3	Input voltage range: 9 to 30 VDC .
DI4-COM	Digital input 4	
DI5-COM	High-speed pulse input	Besides features of DI1 to DI4, it can be used for high-speed pulse input. Max. input frequency: 100 kHz .
A01-GND	Analog output 1	Voltage or current output, determined by jumper J5 on main control board. Output voltage range: 0 to 10 VDC . Output current range: 0 to 20 mA .
D01-CME	Digital output 1	Open-collector, dual polarity output, optical couplingisolated. Voltage range: 0 to 24 VDC. Current range: 0 to 50 mA .
FM-COM	High-speed pulse output	It is restricted by P5-00 (FM terminal output mode selection). As a high-speed pulse output, the maximum frequency is 100 kHz . As an open-collector output, its specification is the same as that of DO1: Voltage range: 0 to 24 VDC. Current range: 0 to 50 mA .
T/A1-T/B1	Normally closed terminal	Contact driving capacity:
T/A1-T/C1	Normally open terminal	250 VAC, 3 A; 30 VDC, 1 A.

3 Operation panel

3.1 Get familiar with operation panel

\checkmark Overview
$\begin{array}{r}\text { Command source indicator } \\ \text { ON: terminal; } \\ \text { OFF: operation panel; } \\ \text { BLINK: communication. } \\ \text { Running state indicator } \\ \text { ON: running; } \\ \text { OFF:stop. }\end{array}$
LED display for parameters
Program key
Confirm key
\checkmark Parameter unit indicator
Indicator appearance

[^0]| Key | Key Name | Function |
| :--- | :--- | :--- |
| Programming | Enter or exit Level I menu. | |
| | Confirm | Enter the menu interfaces level by level, and confirm the parametersetting. |

\checkmark Parameter arrangement

Function code Group	Description	Remark
P0 to FF	Standard function code group	Standard function parameters
A0 to AC	Advanced function code group	Al/AO correction
U0	Running state function code group	Display of state-monitoring parameters

4 Quick setup

4.1 Complete timing diagram for normal travel (use multi-reference as frequency reference)

\checkmark Timing diagram description

Event	Descriptions	Function	Drive Status
ta	- Drive healthy - MC and brake Contactor are energised	---	RUN
tb	- Drive Trip - IGBTs disable - Brake contactor de-energised	----	Trip
tc	- MC contactor got de-energised provided drive IGBTs are disabled after 0.1sec	----	Trip
t1	- Drive waits to enable by lift controller	----	Inhibit
t2	- Drive MC contactor output energized when direction demand command enable by the lift controller. - Desired preset speed reference command enable by lift controller	$\begin{aligned} & \text { P8- } \\ & 60 \end{aligned}$	Ready
t3	- Drive IGBTs immediately go into active mode after the desire drive run permit delay ON set time has elapse.	$\begin{aligned} & \text { P8- } \\ & 60 \end{aligned}$	STOP
t4	- DC injection active - Motor brake contactor energized when motor current demand excess the brake release current level and brake release frequency	P6- 05	RUN
t5	- Motor brake contactor is energized - Optimize profile generator active - Motor start to run	P6- 06 P8- 55 P8- 56 P8- 57 P6- 03 P6- 04	RUN
t6	- DC injection 1 disable after the desired set time has elapsed	P6-06	RUN
t7	- Start optimizer profile generator disable after the desired set time has elapse.	P6-04	RUN
t8	- Motor ramp up to the desire preset speed reference.	$\begin{aligned} & \text { P6-08 } \\ & \text { P6-09 } \\ & \text { P0-17 } \\ & \text { PC- } \\ & 0 x \end{aligned}$	RUN
t9	- Drive output at speed status	PC-0x	RUN
t10	- Change of preset speed reference demand - Motor ramp down to the desire preset speedreference	$\begin{aligned} & \text { P6-08 } \\ & \text { P6-09 } \\ & \text { P0-17 } \\ & \text { PC- } \\ & 0 x \end{aligned}$	RUN
t11	- Drive output at speed status	PC-0x	RUN
t12	- Direction demand command disabled - Motor ramp down to zero speed	$\begin{aligned} & \text { P6- } \\ & 08 \\ & \text { P6- } \end{aligned}$	P6-13 P8-56 P8 59
t13	- DC injection active when drive output falls below the DC injection 2 frequency threshold	$\begin{aligned} & 09 \\ & \text { PO- } \end{aligned}$	
t14	- Brake contactor got de-energise when the drive output frequency fallbelow the brake apply frequency	$\begin{aligned} & 18 \\ & \text { P6- } \\ & 11 \end{aligned}$	

RUN		R	UN RUN
t15	- DC injection still active when brake contactor got de-energise.	P6-13	RUN
t16	- DC injection disable after the desire set time has elapse	P6-14	STOP
t17	- Drive IGBTs got disable - MC contactor delay OFF time active	----	Ready
t18	- MC contactor de-energise after the desire set time has elapse	P8-61	Inhibit

4.2 Elevator performance fine tuning

Frequency Demand

Stage	Symptom	Diagnostics	Remedies
Start	Rollback	Brake device releases too early	Increase P8-57, ranging 0 to 0.5s
		Start frequency is too low	Increase P6-03, ranging 0 to1.5Hz
		Torque output is insuFFicient	Make sure P3-00=0, P3-01=0
	Starting jerk	Brake device releases too late	Decrease P8-57, ranging 0 to 0.5 s
		Start frequency is too high	Decrease P6-03, ranging 0 to 1.5 Hz
Acceleration	Jerk when acceleration starts	Too fast acceleration at this section	Increase P6-08, ranging 0 to 80\%; Or increase P0-17, ranging 0 to 20s
	Jerk when acceleration end	Too fast acceleration at this section	Increase P6-09, ranging 0 to (95-(P608))\% Or increase P0-17, ranging 0 to 20s
	Overshoot when acceleration ends	Too big speed loop Pl gains	Decrease P2-03, ranging 0 to 100 Or increase P2-04, ranging 0 to 10
	Vibration	Too small margin between P2-02 and P2-05	Make sure P2-05-P2-02 > 3Hz, usually increase P2-05, ranging from $\mathrm{P} 2-02$ to 7 Hz
		Overcurrent stall prevention occurs	Make sure P3-18=170\%
Nominal speed	Vibration	Too big speed loop PI gains	Decrease P2-00 or P2-03, ranging 0 to 100; Or increase P2-01 or P2-04, ranging 0.01 to 10.00
		Too big current loop Pl gains	Double check the motor parameters and then perform motor auto-tuning once more

Stage	Symptom	Diagnostics	Remedies
Deceleration	Jerk when deceleration starts	Too fast deceleration at this section	Increase P6-26, ranging 0 to 80\%; Or increase P0-18, ranging 0 to 20s
	Vibration	Overcurrent stall prevention occurs	Make sure P3-18=170\%
	Jerk when deceleration ends	Too fast deceleration at this section	Increase P6-27, ranging 0 to 80\%; Or increase P0-18, ranging 0 to 20s
Creeping speed	Vibration	Torque output is insuFFicient	Make sure P3-00=0, P3-01=0
	Elevator gets stuck	Torque output is insuFFicient	Make sure P3-00=0, P3-01=0
	Move much	Torque output is insuFFicient	Make sure P3-00=0, P3-01=0
	slower than expected	Too small creeping speed setting	Increase P4-16, ranging 0 to 100\%; Or decrease relevant multi-reference
Stop	Jerk	Too fast deceleration at this section	1. Increase P6-27, ranging 0 to 80%; Or increase P0-18, ranging 0 to 20s; 2. Use second deceleration time P8-04: First, set P8-04 bigger than $\mathrm{P} 0-18$, ranging P0-18 to 20s; then set P8-26= creeping speed
		Braking device applies too early	Make sure P8-58 $=0.5 \mathrm{~Hz}$, then increase P8-59, ranging 0 to 0.5 s
		Too strong DC injection at stop	Decrease P6-13, ranging 0 to 100\%
	Slip	Too short DC injection active time atstop	Increase P6-14,ranging 0 to 1s
		Too weak DC injection at stop	Increase P6-13, ranging 0 to 100\%
		Braking device applies too late	Make sure P8-58=0.5Hz, then decrease P8-59, ranging 0 to 0.5 s
	Inaccurate levelling position	Too slow deceleration	1. If P8-04 is not applied, then decrease P0- 18, ranging 0 to 20s; 2. If P8-04 is applied, then firstly decrease P8-04, ranging P0-18 to 20s; secondly set P8-26 = creeping speed
		Slip occurs	Refer to problem „Slip"
	Levelling varies with diFFerent loads	Too weak slip compensation	For SVC, increase P2-06 or F 2-00; For VF, increase P3-09

ONTINUE

Default values are elicited from enormous real elevator applications, so users can rely on them usually, only some adjustments arenecessary. If parameter restoration is prohibited due to some reasons, then the following steps have to be followed one by one.
usually if any DI is set as Forward or Reverse run and if signal is active, then some operations cannot succeed, such as restoring parameters, changing command source, which are necessary steps for quick setup. So it's seriously recommended to remove DI wirings at the beginning of commissioning.

PP-01	Parameter operation	0	1

0: No operation
1: Restore default settings except motor parameters
2: Clear records including errors
4: Restore user's backup parameters
501: Backup parameters
NOTE: usually people have no idea what parameters have been changed, so itts seriously recommended to restore parameters to default at the beginning of commissioning.

Motor Nameplate

P1-01	Rated motor power	model dependent	
	Unit:kW		

P1-02	Rated motor voltage	400		
	Unit: V			
P1-03	Rated motor current			
	Unit: A	50.00		
P1-04	Rated motor frequency			
	Unit: Hz			
P1-05	Rated motor speed	1440		
	Unit: rpm.			

Para.	Parameter name	Default	Commissioning

CONTINUE
Para.
Parameter name
Default
Commissioning

Set Al if Al is frequency reference

P0-02	Command source selection	1	0
	0: Operation panel control (indicator „LOCAL/REMOT OFF) 1: Terminal control (indicator „LOCAL/REMOT ON) 2: Communication control (indicator „LOCAL/REMOT blinking)		
P1-37	Auto-tuning selection		
	0: No auto-tuning 2: Asynchronous motor dynamic auto-tuning 3: Asynchronous motor static auto-tuning(NEW) NOTE: Motor woni rotate at this stage.	3	

Steps of auto-tuning

1. Make sure the UVW connection between AC drive and motor is not cut oFF by output contactor; if it is cut oFF, then manually handle with the output contactor;
2. SetP1-37=3, press ENTER , then LED on panel will display letters TUNE
3. Press the key run on panel, then motor starts auto-tuning, it usually takes about 30 seconds to finish this auto-tuning, wait until LED stops displaying ,TUNE
4. Restore P0-02 to the default value 1 .

P0-01	Control mode selection	2	0 or 2
	0: SVC control 2: VF control		
P0-03	Main frequency source X selection	6	2 or 6
	0:Digital setting P0-08(pressing or gan change P0-08 easily, and the changed value won"t be cleared even after power oFF) 1:Digital setting P0-08(pressing or change P0-08 easily, but changed value would be cleared after power oFF) 2: Al1 3: Al2 4: Al3 5: Pulse setting (DI5) 6: Multi-reference setting 7: Simple PLC 8: PID 9: Communication setting		
P4-13	Al curve 1 minimum input	0.00	0.00
	0 V to P4-15;		
P4-14	Corresponding setting of Al 1 minimum input	0.0	0.0
	-100.0\% to 100.0\%		
P4-15	Al1 maximum input	5.00	
	P4-13 to 10.00 V		
P4-16	Corresponding setting of Al1maximum input	100.0	
	-100.0\% to 100.0\%		

Para.	Parameter name	Default	Commissioning
Para.	Parameter name	Default	Commissioning

Set multi-reference values	PC-01	Reference 1	100.0	100.00
if multi-reference is frequencyreference		$0.0 \text { to } 100.0 \%$ NOTE: PC-01 is set as nominal speed of elevator.		
	PC-02	Reference 1	11.0	11.0
		$0.0 \text { to } 100.0 \% \text {. }$ NOTE: PC-02 is set as creep speed of elevator.		
	PC-04	Reference 4	40.0	40.00
		$0.0 \text { to } 100.0 \% \text {. }$ NOTE: PC-04 is set as inspection speed of elevator.		
	PC-08	Reference 8	20.0	20.0
		$0.0 \text { to } 100.0 \% \text {. }$ NOTE: PC-08 is set as ARD speed of elevator.		
Set DI function	P4-00	DI1 function selection	1	1 (Forward run)
		0 : No function 1: Forward RUN (FWD) 2: Reverse RUN (REV) 8: IGBT Enable 9: Fault reset (RESET) 12: Multi-reference terminal 1 13: Multi-reference terminal 2 14: Multi-reference terminal 3 Setting range: 0 to 59 ; NOTE: this signal comes from elevator controller.		
	P4-01	DI2 function selection	2	2 (Reverse run)
		Setting range same as DI1; NOTE: this signal comes from elevator controller.		
	P4-02	DI3 function selection	12	12
		Setting range same as DII NOTE: if analog input is used as frequency reference, then DI3 is useless, just leave it alone. If multireference is used as frequency reference, then signal , nominal speed comes from elevator controller.		
	P4-03	DI4 function selection	13	13
		Setting range same as DI1. NOTE: if analog input is used as frequency reference, then D14 is useless, just leave it alone. If multireference is used as frequency reference, then signal „creep speed comes from elevator controller.		
	P4-04	DI5 function selection	14	14
		setting range same as DI1; NOTE: if analog input is used as frequency reference, then D15 is useless, just leave it alone. If multireference is used as frequency reference, then signal inspection speed comes from elevator controller.		
	P4-05	DI6 function selection	0	
		setting range same as DI1;		
CONTINUE	Para.	Parameter name	Default	Commissioning
CONTINUE	Para.	Parameter name	Default	Commissioning
Set DO function	P5-01	FM function selection	2	2(Fault output)

4.4 IGBT Enable

In all elevator applications, an Output Contactor is installed between the AC drive output U, V, W and the motor. In an emergency, the Safety Line is opened due to an unsafe condition and the Output Contactor disconnects the power from the inverter to the motor (the motor brake is also applied at the same time). When the Output Contactor opens with current flowing through to the motor (inverter IGBTs are active), there will be arcing in the Output Contactor depending on the motor inductive energy. Arcing of the Output Contactor can reduce the lifetime of the contactor and in some severe cases can damage the contacts poles. Therefore it is recommended to electronically switch oFF the AC drive IGBT firing circuits before opening the Output Contactor (milliseconds later). The AC drive IGBT firing can be electronically switched oFF with the
"IGBT Enable" function as shown in the timing charts below.
CAUTION: An Output Contactor MUST always be installed as the final safety power cut oFF to the motor. The "IGBT Enable" function is NOT a substitute for an Output Contactor, it is designed to work together with the Output Contactor.

* MC reaction time: the reaction time of output relay of MC.

For some applications, the status of output contactor needs to be checked before $A C$ drive starts up, hence one relay output of $M C$ will feedback to IGBT Enable (above in the diagram it is DI6).

This function can work by assigning "IGBT Enable" function to a digital input, please refer to the table below to set.
Take DI6 for example: assign "IGBT Enable" to DI6, then set P4-05=8. If it"s necessary to change active mode of IGBT Enable, then use P4-38 or P4-39 to set (low level or high level active).

4.5 UPS Function

In all elevator applications, most time we will face the issue that passengers may be trapped in the car if power failure suddenly happens during use of the elevator. So the emergency evacuation mode is very important for safety. When the elevator is in UPS mode, the drive will be auto research light load direction to protect passengers can be reach levelling floor for safety.
CASE 1 UPS mode Light load search operation for output current of $\leq 100 \%$

* Light load direction: UPS mode will be auto research light load direction, and it will be running to nearest light load direction floor. Which is decided by F8-62 and U0-66, if U0-66 is lower than F8-62, it will be continue to keep the run direction before UPS; otherwise it will be reverse the direction.
For some applications, the status of Single phase UPS Enable needs to be checked before inverter starts up according to DI8 or F8-68, because it will be removed input phase loss protection in UPS mode, otherwise it will be trip Err12.

CASE 2 UPS mode Light load search operation for output current of > 100\%

5 Function code table

NOTE: not all parameters are listed, here below are relevant to open loop elevator applications.

5.1 Group PO: fundamental

Function	Parameter name	Setting Range		Unit	Default	Commission
Code						
P0-01	Motor 1 control mode	0 : Sensor-less 2 : V/F control	vector control (SFVC)	N.A	2	
P0-02	Command source selection	0 : Operation pa 1 : Terminal 2 : Communica	control (LED oFF) ol (LED on) control (LED flashing)	N.A	1	
P0-03	Main frequency source X selection	$\begin{aligned} & 2 \text { : Al-1 } \\ & 3 \text { : Al-2 } \\ & 4 \text { : Al-3 } \\ & 6 \text { : Multi-refere } \end{aligned}$		N.A	6	
P0-07	Frequency source selection	0 : Main frequen	source X	N.A	0	
P0-09	Rotation direction	0: Same direct 1: Reverse dire		N.A	0	
P0-10	Maximum frequency	50.00 to 100.00		Hz	50.00	
P0-15	Carrier frequency	0.5 to 11.0 (SVC mode: 0.5 (VF mode: 0.5		kHz	Model dependant	
P0-17	Acceleration time 1	0.00 to 650.00 0.0 to 6500.0 0 to 65000	$\begin{aligned} & (\mathrm{PO}-19=2) \\ & (\mathrm{PO}-19=1) \\ & (\mathrm{PO}-19=0) \end{aligned}$	Sec	3.0	
P0-18	Deceleration time 1	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & 0.0 \text { to } 6500.0 \\ & 0 \text { to } 65000 \end{aligned}$	$\begin{aligned} & (\mathrm{PO}-19=2) \\ & (\mathrm{PO}-19=1) \\ & (\mathrm{PO}-19=0) \end{aligned}$	Sec	2.0	
P0-19	Acceleration/Deceleration time unit	$\begin{aligned} & 0: 1 \\ & 1: 0.1 \\ & 2: 0.01 \\ & \hline \end{aligned}$		Sec	1	1

5.2 Group F1: motor 1 parameters

Function Code	Parameter name	Setting Range	Unit	Default	Commission
P1-00	Motor type selection	0 : Common asynchronous motor 1 : Variable frequency asynchronous motor	N.A	0	
P1-01	Motor rated power	0.1 to 1000.0	kW	Model dependent	
P1-02	Motor rated voltage	1 to 2000	V	400	
P1-03	Motor rated current	0.01 to 655.35 (For AC drive power $\leq 55 \mathrm{~kW}$) 0.1 to 6553.5 (For AC drive power > 55 kW)	A	Model dependent	
P1-04	Motor rated frequency	0.01 Hz to maximum frequency	Hz	50	
P1-05	Motor rated rotational speed	1 to 65535	RPM	1440	
P1-06	Stator resistance (asynchronous motor)	0.001 to 65.535 (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535 (AC drive power > 55 kW)	Ω	0	
P1-07	Rotor resistance (asynchronous motor)	0.001 to 65.535 (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535 (AC drive power > 55kW)	Ω	0.000	
P1-08	Leakage inductive reactance (asynchronous motor)	0.01 to 655.35 mH (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 (AC drive power > 55 kW)	mH	0.00	
P1-09	Mutual inductive reactance (asynchronous motor)	0.01 to 655.35 (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 (AC drive power > 55 kW)	mH	0.00	
P1-10	No-load current (asynchronous motor)	0.01 to P1-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 to P1-03 (AC drive power > 55 kW)	A	0.00	
P1-37	Auto tuning selection	0 : No auto-tuning 2: Asynchronous motor dynamic auto-tuning 3 : Asynchronous motor static autotuning(NEW)	N.A	0	

5.3 Group F2: vector control

Function Code	Parameter name	Setting Range	Unit	Default	Commission
P2-00	Speed loop proportional gain 1	0 to 100	N.A	10	
P2-01	Speed loop integral time 1	0.01 to 10.00	Sec	0.50	
P2-02	Switchover frequency 1	0.00 to P2-05	Hz	3.00	
P2-03	Speed loop proportional gain 2	0 to 100	N.A	30	
P2-04	Speed loop integral time 2	0.01 to 10.00	Sec	0.5	
P2-05	Switchover frequency 2	P2-02 to maximum output frequency	Hz	7.00	
P2-06	SVC slip gain	50 to 200	\%	100	
P2-10	Torque upper limit (for SVC)	0.0 to 200.0 (\% AC drive rated current)	\%	150.0	
P2-13	Excitation adjustment proportional gain	0 to 20000	N.A	2000	
P2-14	Excitation adjustmentintegral gain	0 to 20000	N.A	1300	
P2-15	Torque adjustment proportional gain	0 to 20000	N.A	2000	
P2-16	Torque adjustment integral gain	0 to 20000	N.A	1300	

5.4 Group F3: VF control

Function code	Parameter Name	Setting Range	Unit	Default	Commission
P3-00	V/F curve setting	0: Linear V/F 1: Multi-point V/F 2 to 11: not relevant settings	N.A.	0	
P3-01	Torque boost	0.0 to 30.0 (if it is 0 , then auto torque boost is activated)	\%	0	
P3-02	Cut-oFF frequency of torque boost	0.00 to max output frequency	Hz	50.00	
P3-03	Multi-point V/F frequency 1 (P1)	0.00 to P3-05	Hz	1.50	
P3-04	Multi-point V/F voltage 1 (V1)	0.0 to 100.0	\%	6.0	
P3-05	Multi-point V/F frequency 2 (P2)	P3-03 to P3-07	Hz	3.00	
P3-06	Multi-point V/F voltage 2 (V2)	0.0 to 100.0	\%	8.0	
P3-07	Multi-point V/F frequency 3 (P3)	P3-05 to rated motor frequency (P1-04)	Hz	8.00	
P3-08	Multi-point V/F voltage 3 (V3)	0.0 to 100.0	\%	20.0	
P3-09	V/F slip compensation gain	0 to 200.0	\%	0.0	
P3-10	V/F over-excitation gain	0 to 200	\%	0	
P3-11	V/F oscillation suppression gain	0 to100	\%	30	
P3-13	Voltage source for V/F separation	0 to 8	N.A.	0	
P3-14	Voltage digital setting for V/F separation	0 to rated motor voltage	V	0	
P3-15	Voltage rise time of V/F separation	0.0 to 1000.0	s	0.0	
P3-18	Overcurrent stall prevention current limit (for VF mode)	100 to 200 (\% AC drive rated current)	\%	170	
P3-19	Overcurrent stall prevention enable(for VF mode)	0: Disable; 1: Enable	N.A.	1	
P3-20	Overcurrent stall prevention gain(for VF mode)	0 to 100	N.A.	20	
P3-22	Overvoltage stall prevention voltage limit(for VF/SVC)	650 to 800	V	770	
P3-23	Overvoltage stall prevention enable(for VF/SVC)	0: Disable; 1: Enable	N.A	0	
P3-24	Overvoltage stall prevention frequency gain(for VF/SVC)	0 to 100	N.A	30	
P3-25	Overvoltage stall prevention voltage gain(for VF/SVC)	0 to 100	N.A	30	

5.5 Group F4: input terminals

Function Code	Parameter name	Setting Range	Unit	Default	Commission
P4-00	DI 1 function selection (Standard on-board)	0 : No function 1 : Forward RUN (FWD) 2 : Reverse RUN (REV) 3 : Three-line Control	N.A	1	
P4-01	DI 2 function selection (Standard on-board)	4 : Jog Forward (FJOG) 5 : Jog Reverse (RJOG) 6 : Terminal UP 7 : Terminal DOWN	N.A	2	
P4-02	DI 3 function selection (Standard on-board)	8 : IGBT Enable 9 : Fault reset (RESET) 10: RUN Pause 11: Normally open (NO) input of external fault	N.A	12	
P4-03	DI 4 function selection (Standard on-board)	12: Multi-reference terminal 1 13: Multi-reference terminal 2 14: Multi-reference terminal 3 15: Multi-reference terminal 4	N.A	13	
P4-04	DI 5 function selection (Standard on-board)	16: Terminal 1 for acceleration/deceleration time selection 17: Terminal 2 for acceleration/deceleration time selection	N.A	14	
P4-05	DI 6 function selection (On-board expansion card)	18: Frequency source switchover 19: UP and DOWN setting clear (terminal, operation panel) 20: Command source switchover terminal 1 21: Acceleration/Deceleration prohibited	N.A	0	8
P4-06	DI 7 function selection (On-board expansion card)	22: PID pause 23: PLC status reset 24: Swing pause 25: Counter input	N.A	0	15
P4-07	DI 8 function selection (On-board expansion card)	26: Counter reset 27: Length count input 28: Length reset 29: Torque control prohibited	N.A	0	
P4-08	DI 9 function selection (On-board expansion card)	30: Pulse input (enabled only for DI5) 31: Reserved 32: Immediate DC braking 33: Normally closed (NC) input of external fault	N.A	0	
P4-09	DI 10 function selection (On-board expansion card)	34: Frequency modification forbidden 35: Reverse PID action direction 36: External STOP terminal 1 37: Command source switchover terminal 2 38: PID integral pause 39: Switchover between main frequency source X and preset frequency 40: Switchover between auxiliary frequency source Y and preset frequency 41: Motor selection terminal 1 42: Motor selection terminal 2 43: PID parameter switchover	N.A	0	

Function Code	Parameter name	Setting Range	Unit	Default	Commission
		44: User defined fault 1 45: User defined fault 2 46: Speed control/Torque control switchover 47: Emergency stop 48: External STOP terminal 2 49: Deceleration DC braking 50: Clear the current running time 51: Switchover between two-line mode and three line mode 52 to 59 : Reserved			
P4-10	DI filter time	0.000 to 1.000	Sec	0.010	
P4-11	Terminal command mode	0 : Two-line mode 1 1 : Two-line mode 2 2 : Three-line mode 1 3 : Three-line mode 2	N.A	0	
P4-12	Terminal UP/DOWN rate	0.01 to 65.535	Hz/s	1.00	
P4-13	Al curve 1 minimum input	0.00 to P4-15	V	0.00	
P4-14	Corresponding setting of Al curve 1 minimum input	-100.00 to 100.00	\%	0.0	
P4-15	Al curve 1 maximum input	P4-13 to 10.00 V	Volt	5.00	
P4-16	Corresponding setting of Al curve 1 maximum input	-100.00 to 100.00	\%	100.0	
P4-17	Al 1 filter time	0.00 to 10.00	Sec	0.10	
P4-38	DI valid mode selection (for D11 to DI5)	00000 to 11111 (binary)	N.A	00000	
P4-39	DI valid mode selection2 (for D16 to D10)	00000 to 11111 (binary)	N.A	00000	

5.6 Group F5: output terminals

Function Code	Parameter name	Setting Range	Unit	Default	Commission
P5-00	FM terminal output mode	0 : High-speed pulse output(FMP) 1 : ON/OFF output (FMR)	N.A	1	
P5-01	FMR function (open-collector output terminal) Attention! Set P5-00 $=1$ when FM is used as MC or Brake output.	0 : No output 1 : AC Drive running 2 : Fault output (stop) 3 : Frequency-level detection FDT1 output 4 : Frequency reached 5 : Zero-speed running (no output at stop) 6 : Motor overload pre-warning 7 : AC Drive overload pre-warning 8 : Set count value reached	N.A	2	
P5-02	Relay function (T/A1T/B1T/C)	9 : Designated count value reached 10 : Length reached 11 : PLC cycle complete 12 : Accumulated running time reached 13 : Frequency limited 14 : Torque limited 15 : Ready for RUN	N.A	43	
P5-03	Extension card relay function (P/A-P/B-P/C)	16 : Al-1 larger than AI-2 17 : Frequency upper limit reached 18 : Frequency lower limit reached (no output at stop) 19 : Under-voltage state output 20 : Communication setting 21-22 : Reserved 23 : Zero-speed running 2 (having output at stop)	N.A	42	
P5-04	DO-1 function selection (open-collector output terminal)	24 : Cumulative power-on time reached 25 : Frequency-level detection FDT2 output 26 : Frequency 1 reached 27 : Frequency 2 reached 28 : Current 1 reached 29 : Current 2 reached 30 : Timing reached	N.A	0	
P5-05	Extension card DO-2 function	31 : Al-1 input limit exceeded 32 : Load becoming 0 33 : Reverse running 34 : Zero current state 35 : Module temperature reached 36 : Software current limit exceeded 37 : Frequency lower limit reached (having output at stop) 38 : Alarm output 39 : Motor overheat warning 40 : Current running time reached 41 : Fault output (There is no output if it is the coast-to-stop fault and under-voltage occurs) 42 : Brake output 43 : MC (Magnetic contactor) output	N.A	0	
P5-07	A01 function selection	0 : Running frequency 1: Set frequency 2: Output current 3 : Output torque (absolute value)	N.A	3	

5.7 Group F6: start and stop control

Function Code	Parameter name	Setting Range	Unit	Default	Commission
P6-00	Start mode	0 : Direct start 1 : Rotational speed tracking restart 2 : Pre-excited start (asynchronous motor)	N.A	0	
P6-03	Startup frequency	0.0 to 10.0	Hz	1.0	
P6-04	Startup frequency active set time	0.0 to 100.0	Sec	0.3	
P6-05	DC injection 1 level	0 to 150	\%	0	
P6-06	DC injection 1 active settime	0.0 to 5.0	Sec	0	
P6-07	Acceleration/Deceleration mode	0 : Linear acceleration/deceleration 3: S-curve acceleration/ deceleration C	N.A	3	
P6-08	Time proportion of S -curve at Accel start	0.0\% to Min[(100.0\% - P6-09), 80\%]	\%	80.0	
P6-09	Time proportion of S-curve at Accel end	0.0\% to Min[(100.0\% - P6-08), 80\%]	\%	10.0	
P6-10	Stop mode	0 : Decelerate to stop 1 : Coast to stop	N.A	0	
P6-11	DC injection 2 frequency threshold	0.00 Hz to maximum frequency	Hz	0.50	
P6-12	DC Injection 2 delay ON set time	0.0 to 36.0	Sec	0.0	
P6-13	DC injection 2 level	0 to 150	\%	30	
P6-14	DC injection 2 active set time	0.0 to 5.0	Sec	0.5	
P6-26	Time proportion of S-curve at Decel start	0.0\% to Min[(100.0\% - P6-27), 80\%]	\%	20.0	
P6-27	Time proportion of S-curve at Decel end	0.0\% to Min[(100.0\% - P6-26), 80\%]	\%	30.0	

5.8 Group F7: product and software version checking

Function Code Parameter name Setting Range Unit	Default	Commission				
P7-08	Product number	N.A.	N.A.	380.00	display	
P7-10	Performance software version	N.A.	N.A.	$312 . x x$	display	
P7-11	Functional software version	N.A.	N.A.	N.A.	$312 . x x$	display
P7-15	Performance software temporary version		N.A.	0.00	display	
P7-16	Functional software temporary version	N.A.		N.A.	0.00	display

5.9 Group F8: auxiliary functions

Function Code	Parameter Name	Setting Range	Unit	Default	Commission
P8-04	Deceleration time 2	0.0 to 6500.0	sec	2.0	
P8-26	Frequency switchover point between deceleration time 1 and deceleration time 2	0.00 to maximum frequency	Hz	0.00	
P8-55	Brake release current threshold	0 to 200	\%	5	
P8-56	Brake release frequency threshold	0.00 to 25.00	Hz	0	
P8-57	Brake release delay ON set time	0.0 to 5.0	sec	0.0	
P8-58	Brake apply frequency threshold	0.00 to 25.00	Hz	0.50	
P8-59	Brake apply delay OFF set time	0.0 to 5.0	Sec	0.2	
P8-60	Drive run delay ON set time	0.20 to 10.00	Sec	0.20	
P8-61	MC contactor delay OFF set time	0.00 to 10.00	Sec	0.20	

5.10 Group F9: fault and protection

Function Code	Parameter Name	Setting Range	Unit	Default	Commission
P9-00	Motor thermal protection enable selection	0: disable motor thermal protection; 1: enable motor thermal protection	N.A	1	
P9-01	Motor thermal protection coeFFicient	0.1 to 10.00	N.A	1.00	
P9-02	Motor thermal protection prewarning coeFFicient	50 to 99	\%	80	
P9-07	Ground fault detection Enable	0:Disable; 1: Enable detection upon power on; 2: Enable detection upon power on and upon start;	N.A	2	
P9-08	Braking operation voltage level	700 to 800	V	750	
P9-09	Fault auto reset times	0 to 20	N.A	0	
P9-11	Time interval of fault auto reset	0.1 to100.0	Sec	1.0	
P9-13	Drive output phase loss detection Enable	0: Disable; 1: Enable detection during running; 2: Enable detection upon start and during running	N.A	2	
P9-14	1st fault type	0 to 51	N.A.	N.A.	
P9-15	2nd fault type	0 to 51	N.A.	N.A.	
P9-16	3rd (latest) fault type	0 to 51	N.A.	N.A.	
P9-17	Frequency upon 3rd fault	N.A.	Hz	N.A.	
P9-18	Current upon 3rd fault	N.A.	A	N.A.	
P9-19	Bus voltage upon 3rd fault	N.A.	V	N.A.	
P9-20	Input terminal status upon 3rd fault	N.A.	N.A.	N.A.	

Function Code	Parameter Name	Setting Range	Unit	Default	Commission
P9-21	Output terminal status upon 3rd fault	N.A.	N.A.	N.A.	
P9-22	AC drive status upon 3rd fault	N.A.	N.A.	N.A.	
P9-23	Power-on time upon 3rd fault	N.A.	N.A.	N.A.	

5.11 Group FC: multi-reference

Function Code	Parameter name	Setting Range	Unit	Default
PC-00	Reference 0	0.0 to 100.0	$\%$	10.0%
PC-01	Reference 1	0.0 to 100.0	$\%$	100.0%
PC-02	Reference 2	0.0 to 100.0	$\%$	11.0%
PC-03	Reference 3	0.0 to 100.0	$\%$	12.0%
PC-04	Reference 4	0.0 to 100.0	$\%$	40.0%
PC-05	Reference 5	0.0 to 100.0	$\%$	13.0%
PC-06	Reference 6	0.0 to 100.0	$\%$	14.0%
PC-07	Reference 7	0.0 to 100.0	$\%$	15.0%
PC-08	Reference 8	0.0 to 100.0	$\%$	20.0%

Attention!	P4-02 to P4-04 and P4-06 Multi-Reference				
Preset Reference Selector		P4-02	P4-03	P4-04	P4-06
PC-00 : Reference 0	0	OFF	OFF	OFF	OFF
PC-01 : Reference 1	1	ON	OFF	OFF	OFF
PC-02 : Reference 2	2	OFF	ON	OFF	OFF
PC-03: Reference 3	3	ON	ON	OFF	OFF
PC-04 : Reference 4	4	OFF	OFF	ON	OFF
PC-05 : Reference 5	5	ON	OFF	ON	OFF
PC-06 : Reference 6	6	OFF	ON	ON	OFF
PC-07 : Reference 7	7	ON	ON	ON	OFF
PC-08: Reference 8	8	OFF	OFF	OFF	ON

5.12 Group FF: drive parameters

Function Code	Parameter name	Setting Range	Unit	Default	Commission
PF-00	Factory password	0 to 65535	N.A.	0	
PF-01	Drive code	1 to 537		N.A.	Model dependent
PF-02	G/P type selection	1: G type; 2: P type	N.A.	1	
PF-03	Drive rated power	0 to 6553.5		N.A.	Model dependent

5.13 Group FP: function code management

5.14 Group A5: control optimization

Function Code	Parameter name	Setting Range	Unit	Default	Commission
A5-06	Under voltage threshold	60.0 to 140.0	$\%$	60.0	100% is 350 V
A5-09	Overvoltage tripping level	200.0 to 2500.0	V	810	

5.15 Group UO: monitoring

Function Code	Parameter name	Setting Range	Unit	Default	Commission
U0-00	Running frequency	N.A.	Hz	N.A.	
U0-01	Set frequency	N.A.	Hz	N.A.	
U0-02	Bus voltage	N.A.	V	N.A.	
U0-03	Output voltage	N.A.	V	N.A.	
U0-04	Output current	N.A.	A	N.A.	
U0-05	Output power	N.A.	kW	N.A.	
U0-06	Output torque	N.A.	\%	N.A.	
U0-07	DI state	N.A.	N.A.	N.A.	
U0-08	DO state	N.A.	N.A.	N.A.	
U0-09	Al1 voltage	N.A.	V	N.A.	
U0-10	Al2 voltage	N.A.	V	N.A.	
U0-11	Al3 voltage	N.A.	V	N.A.	
U0-41	DI state visual display	N.A.	N.A.	N.A.	
U0-42	DO state visual display	N.A.	N.A.	N.A.	
U0-65	Torque upper limit	N.A.	\%	N.A.	

6 Trouble shooting

6.1 Fault codes

Display	Fault Name	Possible Causes	Solutions
Err09	Undervoltage	1. Instantaneous power failure occurs. 2. The input voltage exceeds the allowed range 3. The DC bus voltage is too low ${ }^{\text {² }}$. 4. The rectifier bridge and buFFer resistor are faulty. 5. The drive board is faulty. 6. The control board is faulty.	1: Reset the fault. 2: Adjust the input voltage to within the allowed range. 3 to 6: Seek for maintenance.
Err10	Drive overload	1. The load is too heavy or the rotor is locked. 2. The drive is of too small power class.	1: Reduce the load, or check the motor, or check the machine whether it is locking the rotor. 2: Select a drive of higher power class.
Err11	Motor overload	1. P9-01 is too small. 2. The load is too heavy or the rotor is locked. 3. The drive is of too small power class.	1: Set P9-01 correctly. 2: Reduce load, or check motor, or check the machine whether it is locking the rotor. 3: Select a drive of larger power class.
Err12	Power input phase loss	1. The three-phase power supply is abnormal. 2. The drive board is faulty. 3. The lightening protection board is faulty. 4. The control board is faulty.	1: Check the power supply. 2 to 4: Seek for maintenance.
Err13	One drive output phase loss	1. The cable between drive and motor is faulty. 2. The drive's three-phase output is unbalanced when the motor is running. 3. The drive board is faulty 4. The IGBT is faulty.	1: Check the cable. 2: Check the motor windings. 3 to 4: Seek for maintenance.
Err14	IGBT overheat	1. The ambient temperature is too high. 2. The air filter is blocked. 3. The cooling fan is damaged. 4. The thermal sensor of IGBT is damaged. 5. The IGBT is damaged.	1: Reduce the ambient temperature. 2: Clean the air filter. 3 to 5: Seek for maintenance.
Err15	External equipment fault	1. External fault signal is input via DI. 2. External fault signal is input via VDI.	Reset the fault.
Err16	Communicatio n fault	1. The host computer is abnormal. 2. The communication cable is faulty. 3. The extension card type set in $\mathrm{P} 0-28$ is incorrect. 4. The communication parameters in group FD are set improperly.	1: Check cabling of the host computer. 2: Check the communication cabling. 3: Set P0-28 correctly. 4: Set the communication parameters properly.
Err18	Current detection fault	The drive board is faulty.	Replace the drive board.
Err19	Motor tuning fault	1. Motor parameters are wrong. 2. Motor tuning overtime.	1. Check motor parameters P1-00 to P1-05. 2. Check the wiring between drive and motor.
Err21	EEPROM readwrite fault	The EEPROM chip is damaged.	Replace the main control board.
Err23	Short circuit to ground	The motor is short-circuited to ground.	Replace the cables or motor.
Err26	Accumulativ e running time reached	The accumulative running time reaches the setting of P8-17.	Clear the record by performing parameter initialization (set PP-01 to 2).
Err27	User-defined fault 1	1. The user-defined fault 1 signal is inputvia DI. 2. User-defined fault 1 signal is input via VDI.	Reset the fault.

| Display | Fault Name | | Possible Causes |
| :--- | :--- | :--- | :--- | :--- |
| Err28 | User-defined fault 2 | 1. The user-defined fault 2 signal is inputvia
 DI
 2. The user-defined fault 2 signal is inputvia
 VDI. | Reset the fault. |
| Err29 | Accumulative
 power-on time
 reached | The accumulative power-on time reaches the
 setting of P8-16. | Clear the record by performing parameter
 initialization (set PP-01 to2). |
| Err30 | OFF load fault | OFFload when it"s running. | Check the connection between motor and load. |
| Err31 | PID feedback lost
 during running | The PID feedback is lower than FA-26. | Check the PID feedback signal or set FA-26 toa
 proper value. |
| Err40 | Quick current limit | 1. The load is too heavy or the rotor is locked.
 2. The drive is of too small power class. | 1: Reduce the load, or check the motor, or check
 the machine whether it is locking the rotor. |
| 2: Select a drive of higher power class. | | | |

6.2 Common symptoms and diagnostics

Fault Name	Possible Causes	Solutions
There is no display at power-on.	1. There is no power supply or the power supply is too low. 2. The switching power supply on the drive board is faulty. 3. The rectifier bridge is damaged. 4. The buFFer resistor of the drive is damaged. 5. The control board or the keypad is faulty. 6. The cable between the control board and the drive board or keypad breaks.	1: Check the power supply. 2 to 5: Seek for maintenance. 6 : Re-connect the 4-core and 28 -core flat cables, or seek for maintenance.
"AAA" is displayed at power-on.	1. The cable between the drive board and the control board is in poor contact. 2. The control board is damaged. 3. The motor winding or the motor cable is shortcircuited to the ground. 4. The power supply is too low.	1: Re-connect the 4-core and 28-core flatcables, or seek for maintenance. 2: Seek for maintenance. 3: Check the motor or replace it, and check the motor cable. 4. Check the power supply according to charpter1.3.
The display is normal upon power-on, but "AAA" is displayed after start and the motor stops immediately.	1. The cooling fan is damaged or the rotor is locked. 2. A certain terminal is short-circuited.	1: Replace cooling fan, or check the machine whether it is locking the rotor. 2: Eliminate shortcircuit.
Err14 is reported frequently.	1. The carrier frequency is set too high. 2. The cooling fan is damaged, or the air filter is blocked. 3. Components (thermal coupler or others) inside the drive are damaged.	1: Reduce P0-15. 2: Replace the fan and clean the air filter. 3: Seek for maintenance.
The motor does not rotate after the AC drive outputs a non-zero reference.	1. The motor or motor cable is damaged. 2. The motor parameters are set improperly. 3. The cable between the drive board and the control board is in poor contact. 4. The drive board is faulty. 5. The rotor is locked.	1: Check the motor, or check the cable between the drive and the motor. 2: Check and re-set motor parameters. 3: Re-connect the 4-core and 28-core flat cables, or seek for maintenance. 4: Seek for maintenance. 5: Check the machine whether it is locking the rotor.
The DI terminals are disabled.	1. The DI parameters are set incorrectly. 2. The input signal is incorrect. 3. The wire jumper between OP and +24 V is in poor contact. 4. The control board is faulty.	1: Check and reset DI parameters in group P4. 2: Check the input signals, or check the input cable. 3: Check the jumper between OP and +24 V . 4: Seek for maintenance.
The drive reports overcurrent and overvoltage frequently.	1. The motor parameters are set improperly. 2. The acceleration/deceleration time is too small. 3. The load fluctuates.	1: Reset motor parameters. 2: Set proper acceleration/deceleration time. 3: Check the machine, or seek for maintenance.

[^0]: \checkmark Keys on operation panel

